PEMBAHASAN SOAL UN MATEMATIKA POLA DAN BARISAN BILANGAN

Posted by on 2017-04-12 - 9:13 AM

Teknokiper.com - Pola dan Barisan Bilangan. Kumpulan model soal ujian nasional bidang study matematika tentang pola dan barisan bilangan untuk tingkat sekolah menengah pertama. Pembahasan soal UN Matematika tentang pola dan barisan bilangan ini terdiri dari beberapa model soal yang paling sering keluar dalam ujian nasional antara lain : menentukan hasil dari penjumlahan suku suatu barisan, menentukan suku ke-n pada suatu barisan geometri, menentukan dua suku berikutnya pada suatu barisan, menentukan suku ke-n barisan aritmetika, menentukan jumlah n suku pertama barisan aritmetika. Pembahasan ini disusun berdasarkan soal-soal ujian nasional tahun-tahun sebelumnya agar murid memiliki gambaran mengenai model soal pola dan barisan bilangan yang pernah keluar dalam ujian nasional.

Soal 1 : Pola dan Barisan

Rumus suku ke-n suatu barisan adalah Un = 5n - 7. Nilai dari U1 + U5 adalah ....
A. 20
B. 18
C. 16
D. 6

Pembahasan :
Untuk mengetahui jumlah dari U1 + U5, kita dapat menentukan nilai dari masing-masing suku tersebut terlebih dahulu yaitu dengan cara mensubstitusikan nilai n sesuai dengan nomor sukunya.

Suku pertama :
⇒ Un = 5n - 7
⇒ U1 = 5(1) - 7
⇒ U1 = 5 - 7
⇒ U1 = -2

Suku kelima :
⇒ Un = 5n - 7
⇒ U5 = 5(5) - 7
⇒ U5 = 25 - 7
⇒ U5 = 18

Dengan demikian, kita peroleh :
⇒ U1 + U5 = -2 + 18
⇒ U1 + U5 = 16
Jawaban : C

Soal 2 : Menentukan Suku ke-n Barisan Geometri

Amoeba membela diri menjadi dua setiap 20 menit. Jika mula-mula terdapat 15 Amoeba, maka selama 2 jam banyak Amoeba menjadi ....
A. 2120
B. 1920
C. 960
D. 480

Pembahasan :
Amoeba membela diri menjadi dua setiap 20 menit. Itu artinya 1 amoeba akan terbelah jadi 2, dua amoeba akan terbelah jadi 4, empat amoeba akan terbelah jadi 8, delapan amoeba membelah menjadi 16 dan seterusnya sehingga terbentuk barisan sebagai berikut:
⇒ 2, 4, 8, 16, 32, ...

Dari pola barian di atas dapat kita simpulkan bahwa proses pembelahan amoeba tersebut menghasilkan suatu barisan geometri yang memiliki perbandingan antara dua suku berdekatan akan selalu sama. Perbandingan antara dua suku berdekatan ini adalah 2 (r = 4/2, 8/4, 16/8, dst).

Karena proses tersebut membentuk barisan geometri, maka kita dapat menggunakan rumus barisan geometri untuk menentukan jumlah amoeba setelah 2 jam. Suku ke-n pada barisan geometri dihitung dengan rumus berikut:
Un = a . rn - 1

Keterangan :
Un = suku ke-n
a = suku awal
r = rasio

Pada soal disebutkan bahwa amoeba membelah setiap 20 menit. Itu artinya dalam 2 jam (120 menit), amoeba melakukan pembelahan sebanyak 6 kali.
⇒ Banyak pembelahan = 120/20
⇒ Banyak pembelahan = 6 kali

Karena sudah melakukan pembelahan sebanyak 6 kali, maka dalam barisan yang terbentuk suah ada tujuh suku barisan. Dengan demikian, jumlah amoeba selama 2 jam itu sama dengan suku ke-7 (n = 6 + 1).

Dari soal diketahui suku awalnya sama dengan 15 dan rasio = 2. Maka, berdasarkan rumus suku ke-n barisan geometri, suku ke-7 barisan geometri tersebut adalah:
⇒ U7 = a . r7 - 1
⇒ U7 = 15 . 26
⇒ U7 = 15 x 32
⇒ U7 = 480

Jadi, dalam waktu 2 jam, banyak amoeba menjadi 480 amoeba.
Jawaban : D

Soal 3 : Menentukan Suku ke-n Barisan Aritmetika

Diketahui barisan bilangan 5, 11, 17, 23, 29, .... suku ke-50 adalah ....
A. 294
B. 299
C. 305
D. 1470

Pembahasan :
Pola bilangan :
⇒ Barisan : 5, 11, 17, 23, 29
⇒ Barisan : 5, (5 + 6), (11 + 6), (17 + 6), (23 + 6)
⇒ Beda barisan : b = 6

Dari penjabaran di atas dapat disumpulkan bahwa barisan tersebut merupakan barisan aritmetika dengan suku awal 5 dan beda 6. Suku ke-n barisan aritmetika dapat ditentukan dengan rumus berikut:
Un = a + (n - 1)b

Keterangan :
Un = suku ke-n
a = suku pertama
b = beda

Berdasarkan rumus tersebut, maka suku ke-50 barisan itu adalah:
⇒ U50 = a + (50 - 1)b
⇒ U50 = a + 49b
⇒ U50 = 5 + 49(6)
⇒ U50 = 5 + 294
⇒ U50 = 299
Jawaban : B

Soal 4 : Menentukan Jumlah n Suku Pertama Barisan Aritmetika

Dketahui suku ke-5 dan suku ke-8 barisan aritmatika masing-masing 16 dan 25. Jumlah 22 suku pertama adalah ....
A. 451
B. 781
C. 814
D. 902

Pembahasan :
Pada soal ke-3 kita sudah membahas rumus menentukan suku ke-n pada barisan aritmetika. Dengan rumus tersebut dan data yang ada pada soal, maka akan dihasilkan dua persamaan sebagai berikut.

Suku ke-5 :
⇒ U5 = a + (5 - 1)b
⇒ 16 = a + 4b
⇒ a = 16 - 4b .... (1)

Suku ke-8 :
⇒ U8 = a + (8 - 1)b
⇒ 25 = a + 7b
⇒ a + 7b = 25 .... (2)

Selanjutnya kita tentukan nilai a dan b dengan menggunakan metode substitusi, eliminasi, atau metode campuran. Pada pembahasan ini, Teknokiper menggunakan metode substitusi.

Substitusi persamaan (1) ke persamaan (2) :
⇒ a + 7b = 25
⇒ 16 - 4b + 7b = 25
⇒ 16 + 3b = 25
⇒ 3b = 25 - 16
⇒ 3b = 9
⇒ b = 3

Substitusi nilai b = 3 ke salah satu persamaan :
⇒ a = 16 - 4b
⇒ a = 16 - 4(3)
⇒ a = 16 - 12
⇒ a = 4

Dari perhitungan tersebut kita sudah memperoleh nilai suku awal (a) dan beda (b) dari barisn aritmetika tersebut. Selanjutnya, jumlah 22 suku pertama dapat dihitung dengan rumus berikut:
Sn = n/2 (a + Un)

Keterangan :
Sn = jumlah n suku pertama
a = suku pertama
Un = suku ke-n

Suku ke-22 :
⇒ U22 = 4 + (22 - 1)3
⇒ U22 = 4 + 63
⇒ U22 = 67

Dengan demikian, jumlah 22 suku pertama adalah:
⇒ S22 = 22/2 (4 + 67)
⇒ S22 = 11 (71)
⇒ S22 = 781
Jawaban : B

Soal 5 : Menentukan Suku ke-n Suatu Barisan

Dua suku berikutnya dari barisan 3, 4, 6, 9, .... adalah ....
A. 13, 18
B. 13, 17
C. 12, 26
D. 12, 15

Pembahasan :
Untuk menentukan dua suku berikutnya dari barisan tersebut, kita harus melihat pola bilangannya. Untuk melihat polanya, kita bisa membandingkan dua suku berdekatan atau melihat selisih antara dua suku berdekatan.

Pola bilangan :
⇒ Barisan = 3 , 4, 6, 9
⇒ Barisan = 3, (3 + 1), (4 + 2), (6 + 3)

Untuk lebih jelasnya mengenai pola bilangan yang ada pada barisan tersebut, perhatikan gambar di bawah ini!

Pembahasan soal un matematika pola dan barisan bilangan

Dari data di atas dapat kita simpulkan bahwa pola bilangannya adalah selisih antara dua bilangan selalu bertambah satu dari selisih dua bilangan sebelumnya.

Dua suku berikutnya :
⇒ Barisan = 3, 4, 6, 9, (9 + 4), (13 + 5)
⇒ Barisan = 3, 4, 6, 9, 13, 18

Jadi, dua suku berikutnya adalah 13 dan 18.
Jawaban : A

Seluruh konten yang diterbitkan di teknokiper.com disusun oleh teknokiper dan dilindungi undang-undang hak cipta. Dilarang menerbitkan ulang konten dalam bentuk apapun dan dengan cara apapun.

Related Post:

Advertisements

0 comments :

Post a Comment